Multivariate analyses of visible/near infrared (VIS/NIR) absorbance spectra reveal underlying spectral differences among dried, ground conifer needle samples from different growth environments
نویسندگان
چکیده
• Absorbance of visible and near infrared (400–2500 nm) radiation by plant material is determined primarily by biochemical and structural components. We used three multivariate techniques to explore the spectral differences among dried, ground foliage samples of two conifer species from different montane growth environments (three elevations and two crown positions on three different mountains). • Principal components analysis indicated underlying spectral patterns strongly related to species and crown position, and the derived components were correlated with the chemical composition of the samples. Discriminant analysis showed that it was possible to perfectly separate samples by species, but much more difficult to discriminate among different elevations, using just the spectral information. Samples from low and high elevation were well-separated, but mid elevation samples were frequently misclassified. • Partial least squares regression produced results that were superior to those of discriminant analysis, in that all groups were better separated and there was less within-group variability. • These approaches do not directly reveal the biochemical basis of the spectral differences. However, such methods provide a solid foundation for hypothesizing the overall degree of biochemical similarity among diverse samples. Thus, samples from different growth elevations appeared to be biochemically more similar than samples from different species or crown positions. Other potential applications are discussed.
منابع مشابه
Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy.
The feasibility of using visible/near-infrared spectroscopy (vis/NIR) to segregate broiler breast fillets by water-holding capacity (WHC) was determined. Broiler breast fillets (n = 72) were selected from a commercial deboning line based on visual color assessment. Meat color (L*a*b*), pH (2 and 24 h), drip loss, and salt-induced water uptake were measured. Reflectance measurements were recorde...
متن کاملEffects of Soil Moisture Content on Absorbance Spectra of Sandy Soils in Sensing Phosphorus Concentrations Using Uv-vis-nir Spectroscopy
This study was conducted to investigate the effects of soil moisture content on the absorbance spectra of sandy soils with different phosphorus (P) concentrations using ultraviolet (UV), visible (VIS), and near-infrared (NIR) absorbance spectroscopy. Sieve sizes were 125, 250, and 600 m for fine, medium, and coarse, respectively. The medium size of the samples was used for the study. Investigat...
متن کاملDetermination of Leaf Relative Water Content of Two Genotypes of Sesame Using Visible and Near- Infrared (VIS/NIR) Spectrometry to Detect Drought Stress
Relative water content (RWC) in plants is one of the most important biochemical parameters and its deficiency limits efficiency of photosynthesis and crop productivity. The scientific reports on using spectroscopy in detecting drought stress for sesame plants are very rare. In this study, the possibility of identifying water stress in two sensitive (Naz-Takshakhe) and resistant (Yekta) genotype...
متن کاملNondestructive Firmness Estimation of Tomato Fruit Using Near-Infrared Spectroscopy
Today, nondestructive methods are widely used to determine the quality of agricultural products. Meanwhile, visible and near-infrared (Vis/NIR) spectroscopy is regarded as one of the most widely used methods in the field of quality assessment of agricultural products. In this study, a system was developed to measure the Vis/NIR spectra of tomato fruit samples in the half-transmittance mode of m...
متن کاملMid-Infrared and near-infrared spectral properties of mycorrhizal and non-mycorrhizal root cultures.
We investigated the Fourier-transformed mid-infrared (MIR) and near-infrared (NIR) spectroscopic properties of mycorrhizal (M) and non-mycorrhizal (NM) carrot roots with the goal of finding infrared markers for colonization by arbuscular mycorrhizal (AM) fungi. The roots were cultured with or without the AM fungus Glomus intraradices under laboratory conditions. A total of 50 M and NM samples w...
متن کامل